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Abstract 

The study of the unification SO(6,1) as a spectrum generating algebra is continued to 
include baryons in the scheme. Among others, the second-order mass formula of Okubo 
for the ~+ baryon resonances is derived. 

1. Introduction 

In a previous paper (Tait, 1972), hereafter referred to as I, the algebra 
SO(6,1) was considered as a unification (Flato & Sternheimer, 1966) of the 
internal symmetry algebra SO(6) ~ SU(4) and SO(4,1) which is isomorphic 
to the algebra of  the group of  motion of  one of  the De Sitter space-times; 
the latter being chosen as an alternative to the Poincar6 algebra which 
encounters serious difficulties (O'Raifeartaigh, 1965a, b, c; Jost, 1966; 
Segal, 1967) because of the 'no-go' theorems on the spectrum of  the mass- 
squared operator Pt, P'. Although there can be no logical objection to the 
use of  the De Sitter algebra as a viable space-time symmetry, what is 
surprising is the accuracy of the mass formulae obtained for the meson 
resonances 1- and 2 +, when the expectation values of the mass operator were 
evaluated in a simple representation of  SO(6,1). This is because the only 
input which can remotely be connected with dynamical information is the 
choice of algebra and the choice of representation. 

In this paper, more general representations are considered so that 
baryons may be included in the scheme, and the Okubo (1963) second-order 
mass formula (for M 2) is derived. Also, new mass sum rules for the 1- and 
2 + meson resonances are found. 

2. Bilocal Harmonics 

The representation of SO(6,1) considered in I was realised on the 
spherical harmonics 
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of $5, given by 
6 3 

Xa 2 ~-- ~ Z t ZI* ~ 1 
a=l l=l  

The angles parametrise $5, p and q are the two positive integers specifying 
a representation of SU(3), while T, Ta, and Y represent isospin, its third 
component and hypercharge. These functions which carry all the represen- 
tations of SU(3) are just the components of irreducible Cartesian tensors 
constructed out of a single point on the surface $5, being completely 
symmetric, traceless, with p contravariant and q covariant indices. In terms 
of the single vector (zl, z2,z~) and its complex conjugate, they are homo- 
geneous polynomials of degree n = p + q. In addition to these properties 
they must be eigenfunctions of the invariants of the algebras in the chain 

SO(6,1) ~ SU(4) D SU(3) @ Z D  SU(2)r @ y D  Ta 

where Z is the charm operator with eigenvalues �89 - q) in this representa- 
tion. 

Let z~ and z~* carry the contravariant and covariant indices respectively 
in the monomials 

(abcldef) = za" Zz b za c z~ ~ z~ e z *s (2.1) 

where a, b, c, d, e, f are all positive integers or zero and p = a + b + c, 
q = d + e + f .  An irreducible representation (I.R.) of SO(6,1) can be defined 
on the space (2.1) using the form of the generators LAB(A,B= 0,1,. . .6) 
described in I and the fact that zl = x,, + ix6, Zz = xa + ixs, z3 = x l  + ix2. 
The non-compact generators Lo, may be combined into 

E1 • = L04 ::k iL06, E2 +- = L03 ~ iL05, E3 +- = Lol  ~ iLo2 

given by 

El + _ 2 i + + i z ~  ~ [ O ,O ~ = z , , - - + z k -  +-~iz~ 
~=lt  Ozk az~*) 

~z~ ( a , 0 \ 5 ,  El- - 2 i  + izl* ~ Zk azk aZk ] = k=~ w -  + zk -ff2-~l + -~izi 

All that is necessary to make this representation identical to the one 
constructed in I is to require that the algebra acts on the traceless 
projections of (2.1) and that appropriate linear combinations of the same 
degree are formed to be eigenfunctions of T 2, With the inner product 
defined by the measure on $5, 

3 
d/z = sin 3 0 cos 0 sin r cos ~ dO d~ 1-I d4)k 

k=l 
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two monomials ~k and $' are orthogonal unless T3 = Ta', Y = Y' ,  Z = Z ' ;  
and the normalisation of (abcidef)  is given by 

N2 = 8rc3 [2(a + d)] !! [2(b + e)] !![2(c + f ) ]  ! ! 
[2(n + 2)]!t 

Now consider functions of the components of two distinct vectors in Cz, 
say z~ and u~, together with their complex conjugates, where the locus of 
both vectors is still Ss. Let them be defined in the following way (B6g & 
Ruegg, 1965) [:n;] 

O:(u ,z )  = 22 ~ ~,~;(z)~";(u) , ~. 
n' ,n~,  p o , o  ~ 

where the last symbol is an SU(4) Clebsh-Gordon coefficient, the functions 
ft," are the normalised spherical harmonics found previously, corresponding 
to the representation [0, n, 0] of SU(4), and tr denotes collectively the quan- 
tum numbers (p, T, T3, Y), The r are called bilocal harmonics, and 
if they are to provide an irreducible representation space for SO(6,1), it is 
necessary to find the irreducible subspaces contained in the direct product 

(mOo [~ m, 0]) | (.~ [0, n, 0]). 
where 

[0,m,0] | [0,n,0] = ~) [ r , m - y + x - r , r ] ;  (rn>n) (2.2) 
~lX, r  

y + x q - r = n  

By varying m and n in (2.2) it is easily seen that an I.R. o f S 0 ( 6 , 1 )  may be 
constructed in the space of all the real representations of SU(4). The 
problem of finding the irreducible subspaces is not attempted here, however. 
But instead certain representations of SU(4), containing representations of 
SU(3) of physical interest (such as octets and decuplets), are selected and 
examined. These are the 15 and 20" containing the octets 

( ~  = z~ uj* ~ u~zp  - z}~j(u+ z ~: ztu)  

respectively, the 50 containing the decuplet 

~uk = zl z j  u~ + z~ z k uj + z k z  j u~ 

and finally the 64 containing the octet 

@j = zi ~jkz zk u~ 

In ~b +-, the complex conjugates of the basis functions also lie in the 
respective octets, so that they represent mesons. Since this is not the case 
for the other two multiplets, we can make a correspondence with baryons. 
It happens that baryons and antibaryons are contained in the same SU(4) 
multiplet. The diagonal matrix elements of the mass-squared operator can 
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now be examined with these functions using the fact that the inner product 
is now defined by 

where dp~(d#~) is the surface element on Ss traced out by the vector z(u) 

3. Mass Formulae 

The mass-squared operator is 

M 2 = #2(Zt] 1 + L022 + L023 + Zo 52 _ Z122 _ L23 _ L2-31 L25 - L25 - Z]5} 

= #2(�89 E 2- + E2-E2 + + E3+E3 - + E3-E3 +) - 2C 2 _ 2T 2} 

where C 2 and the unknown parameter #2 are defined in I. The operators 
LAn(u,z) representing S0(6,1) in the space of bilocal harmonics are given 
by 

LAB(U, z) = LA~(z) | I(u) + I(z) | LAB(U) 

in an obvious notation; and the commutation relations are unaffected by 
the substitutions E~+(z) ~ Et+(z) + 7z,  E~+(u) ->- E~+(u) + ~1 ut (see I), 
while the representation remains hermitian only if y and Yl are real. The 
computation of  the matrix elements mZ(T, Y) of M 2 yields the following 
results. 

3.1. The Decuplet ~ljk 

mZ(k, 1) = #2[~--01 -~ r  2 -q- �88 

m2(1, o) = + +  7121 
= 8 ,2.+. 7 , 2] m2(�89 + 

m2(0,_2) = ,  21569 .~ 2 , 2  ~_ 1 , 2 ]  
t - ' 4~  ~y  ~ g l  J 

which leads to a consistency sum rule, accurately satisfied by the 3/2 + 
decuplet N*, Ya*, ~*, f2-: 

N .2 + 33 *2 = 12 -2 + 3 y~2 (3.1.1) 

(8.550 GeV 2) (8.550 GeV 2) 

(3.1.1) can be derived from the equal spacing rule for linear masses, or from 
the Okubo (1963) second-order mass formula (for mass-squared), namely 

M2 = a + b Y + c Y  2 

3.2. The O c t e t ~  

sum rule: 

m2(1,0) = #2168- ~ + �88 + 712)] 

m2(�89 1) = #211~ + ~(y2 + 72)] 

m2(0, 0) = #21180o + ~-�89 (72 + 7,2)] 

64m2(�89 1) = 23m2(1,0) + 39m2(0, 0) 
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which is well satisfied for  the meson  resonances 1- (l.hls. = 51.0, r.h.s. = 
54"0) and 2 + (l.h.s. = 128.6, r.h.s. = 128.4). 

The  significance of  the other  two octets is not  so clear-cut. ~b~ yields the 
sum rule 24m2(�89 = 13m2(1,0) + 9m2(0,0), which is satisfied by no known 
meson  octet.  ~k~J gives 13A .2 = 12~ .2 + 3Z .2 (the minor  of  N .2 is zero). 
Very tentatively, we assign the { -  octet  o f  baryons  to this multiplet;  for  
N*(2190), A* (2100) have been established as 21-, while ~,* (1815) lies in the 
sequence { - ,  ~+, -~- . . .  (Dalitz, 1969). Using these as input, they imply a 
2;* with mass  2439 MeV. This is taken to be the 2~* (2455) which as yet has 
no spin-pari ty assignment.  

The  numerical  calculations indicated above show that  there is a need for  
a closer examinat ion  o f  the representat ions of  SO(6,1) and also for  a study 
o f  other  algebras containing SU(3) and SO(4,1). 
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